Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods

نویسندگان

  • Feng Xu
  • Lijun Wu
  • Qingping Meng
  • Merzuk Kaltak
  • Jianping Huang
  • Jessica L Durham
  • Marivi Fernandez-Serra
  • Litao Sun
  • Amy C Marschilok
  • Esther S Takeuchi
  • Kenneth J Takeuchi
  • Mark S Hybertsen
  • Yimei Zhu
چکیده

Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Spinel LiMn2O4 nanorods as lithium ion battery cathodes.

Spinel LiMn2O4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline beta-MnO2 nanorods and their chemical conversion into free-standing single-crystalline LiMn2O4 nanorods using a simple solid-state reaction. The LiMn2O4 nanorods have an average diameter of 130 nm and length of 1.2 mic...

متن کامل

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017